
HiDrive
Synchronization

Table of contents
1 Introduction...3

2 Startup mode...4

Server-to-Client replication...4

Client-to-Server replication...5

3 Operational mode..5

Change notification — “doorbells”...5

Write operations..5

Caching...5

Conflict resolution...5

4 Hashes in detail..6

Introduction..6

File content...6

Sparse or empty file optimization..7

Rationale for this file content hashing algorithm..7

Combining hashes and retrieving server-side hashes..7

File content hashes — chash...7

File system entry names — nhash...7

Metadata hashes — mhash...8

Directory hash (including content, recursive)...8

Directory hash (metadata only, non-recursive)...8

Change notification service...8

5 Hash calculation examples..9

Name and metadata hashes: nhash and mhash...11

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 2

1 Introduction
The HiDrive API provides features to enable data synchronization between one or more local clients that use
HiDrive as remote storage. Synchronization can be achieved in a three-stage process.

The startup stage begins when the sync client establishes a connection to the server. Once connected, the
client subscribes to change notifications and then compares the server’s remote state with its own local state,
building a synchronization plan. All server-side changes are then replicated to local data if applicable; conflicts
may occur in this stage and need to be handled according to the conflict resolution rules.

In the second stage, the client replicates all remaining local changes to the server.

Once the replication of changes in both directions has completed successfully, the client can enter an
operational mode, the third stage. The server will notify all subscribed clients whenever server-side changes to
the file system occur.

Figure 1: Overview (black arrows: API communication, green: change notifications via websocket)

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 3

Client Server
subscribe to synchronized folders

GET /dir path=/

public: hash=0a38215… users: hash=8fd5ca2…

GET /dir path=/public

Pictures: hash=f678a12… Music: hash=dba9263…

PUT /public/Videos…

id=d0.f3932… hash=c0036a3…

…

doorbell: /public/Videos… changed

…

doorbell: /public/Music… changed

fetch changes
from server

sync local
changes

in sync, wait
for changes changed by

another client

Change detection is based on hash values that are calculated for both content and metadata (name and last
modification time and, for files, the size). For file content data, the smallest unit is a hash calculated for a 4096-
byte block. Hashes for content and metadata can be combined so that a single hash value represents the
entire state of a sub-tree.

Figure 2: File content hashing overview 4096 bytes

2 Startup mode
Server-to-Client replication

To replicate the remote server’s state to the local state, the client can request a listing of the top-level directory
that contains hash information. By comparing the remote directory hashes to locally generated hashes, the
client can identify modifications. If the hashes for a directory are the same, the content in that directory does
not need to be examined, because everything contained in and below these directories is the same on both
sides. A recursive comparison is required if the hashes differ.

File content can be compared using the top-level content hash of the file. If the hashes differ, sub-level hashes
can be requested from the server to identify blocks that have diverged from the local copy from the top down.
This way, the client can identify and selectively download only those remote chunks that are sufficient to
replicate the server-side state.

Some operations can have a huge and unnecessary impact if not handled properly. For example, consider a
rename operation on the remote side. In a naïve interpretation, this appears to be a deletion followed by

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 4

block 0 block 1 block 2 block nblock n-1block n-2

10 2 n

4096 byte 4096 byte 4096 byte 4096 byte 4096 byte 4096 byte

Level 1 hash
(1M)

Level 0 hash
(4k)

256 hashes, transformed with position index

1'0' 2'

…

…

…

…

+ + +

0

256 hashes, transformed with position index

1

1'0' + 2'+

Level 2 hash
(256M)

256 hashes, transformed with position index

0

1'0' 2' …+ + +

…

…

…+

…

…

SHA-1

SHA-1 SHA-1 SHA-1

SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1

SHA-1

SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1

SHA-1

file

creation of a new entry. Replicating these steps faithfully would result in an unnecessary transfer of data
already present on the local system. Similarly, the amount of allocated quota on HiDrive would double if a
rename operation on the local side is processed as a new upload followed by a deletion of the original file.

Note that a rename operation on the remote side for a directory or file results in a new file system entry with
new metadata hashes, but its content hash value remains the same and is the same as an already known, local
entry. It is advisable to build a list of all operations which that can be identified in this way, such as rename,
copy, and move. Detecting these operations on the file level is required and while the same optimization is
possible for the directory structure, it is usually not necessary.

Client-to-Server replication
It is assumed that a client represents the HiDrive data using a virtual file system1 and thus is “aware” of the
local state at all times. Local changes that occurred since the last sync can simply be replicated to the remote
server unless they require conflict resolution.

3 Operational mode
Change notification — “doorbells”
The client can subscribe to a websocket-based change notification service for one or more directories. Once
subscribed for a directory, the client will receive doorbell events whenever the subscribed directory itself or,
recursively, any file system entries in the subtree are modified. Please refer to the “[subs2-doorbell
documentation]” for details.

A client should subscribe before entering startup mode so that changes occurring during the initial
synchronization phase can subsequently be replicated.

When the client receives a notification, it compares the remote hashes with the local version to detect and
locate changed entries and then requests the updated file, or chunks thereof, from the server.

Write operations
While the client is connected to the server, any write operation to a local entry should be directly replicated to
HiDrive. Shortly thereafter, the server’s doorbell event will confirm the operation and the remote hashes can
be checked against the local version to verify.

Caching
The client should offer local caching for non-synchronized directories, both for metadata (file name,
timestamps, file size, etc.) and data on a block level.

For example, if the user opens a directory in Windows Explorer, the local metadata cache is validated against
the server using the metadata-only hashes. Also, the client should start a subscription for that directory to
enable a near real-time display of changed entries and to update or invalidate cached data where required.

When a file is opened locally, the available cached data blocks are validated against the server. Invalid cached
data blocks are discarded. When uncached data is accessed, it is fetched from the server, placed into the cache
and then returned to the application. Additionally, some data can be prefetched to enable buffering for
streaming applications.

1 Example implementations include FUSE for Unix-based systems and EldoS Callback File System, Dokan or FileSystemWatcher for
Windows.

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 5

Conflict resolution
Conflict resolution is only required during the initial startup phase. When the client has achieved a synced
state and enters the operational phase, any local changes should be directly replicated to HiDrive as described
in the section Write operations.

During the initial startup phase, the client fetches hashes for changed data from HiDrive. These new remote
hashes are then compared to the ones dating from the last successful in-sync state or to local hashes before a
local change was made. If the hashes are identical, the local change can be uploaded to HiDrive directly,
otherwise the local change and the remote state are in conflict. To resolve this conflict, the local file first needs
to be locally renamed and uploaded to HiDrive. Thereafter, the file is recovered locally from the remote
version.

4 Hashes in detail
Introduction
One of the requirements for an efficient synchronization protocol is the ability to determine which data is not
in sync. Support for change detection and data comparison in HiDrive is built on hashes. While having a single
hash for a file’s content is viable for small files, it becomes more time-consuming to calculate the hash as the
file size increases. For that reason, HiDrive offers hierarchical content hashes on multiple levels combined with
metadata hashes that allow a client to pinpoint a change down to a 4096-byte block of content data as well as
to verify efficiently whether two whole directory subtrees are identical.

A sync client that reconnects to HiDrive can request a single 20-byte value from the API and, through a
comparison with a locally generated value, find out if there were any changes on the remote side. If the hash
values match, the client is still in sync. Otherwise, it can descend into the directory tree to identify changed
directories and files.

Via the HiDrive API, hashes can be requested for:

 File content (hierarchical) and metadata (name, size and mtime)
 Directories; name, data they contain, metadata and subdirectories (i.e. recursive)
 Metadata of directories (non-recursive)

For these hashes to be useful during the synchronization, a sync client must be able to generate these hashes
locally as well.

File content
Content hashes (chash) for a file are structured hierarchically: First, for each 4096-byte sized block of raw file
content, the respective SHA-1 digest2 is calculated. This is called a Level 0 hash (L0). No hash is calculated (an
“empty” hash) if the file content block contains only null bytes or belongs to a hole in a sparse file (see below
for details). If the last block of a file is shorter than 4096 bytes, the block’s content data is padded with null
bytes before calculating the hash value.

A Level 1 hash can be formed by aggregating 256 of the L0 hashes after a transformation to include the block’s
position: Each 4096-byte block is assigned a position index i [0,255] that is encoded as an 8-bit value. The
index byte is appended to the 20 bytes of each L0 hash and a new SHA-1 digest over <L0-hashi, indexi> is
calculated. If a content block contained only null bytes and thus no corresponding L0 hash was calculated (the
hash at the index position is empty), the index position is simply incremented and processing continues with

2 https://tools.ietf.org/html/rfc3174

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 6

the next L0 hash. All transformed level 0 hashes are then added3 modulo 2160, producing a 20-byte long Level 1
hash covering one megabyte of content data.

This aggregation function—append index byte to Ln hash, generate SHA-1 digest, add digests to obtain the
Ln+1 hash—can be applied repeatedly: 256 L1 hashes can be aggregated to form a Level 2 hash L2 covering
256M, 256 L2 hashes can be transformed into a L3 hash (64G) and so on.

The “top-level hash” is reached when a single 20-byte hash value remains from the last aggregation step and
all other hashes on the level are considered empty. This 20-byte top-level hash corresponds to the entirety of
the file content: if even a single byte is changed in the content, the avalanche property of the SHA-1 digest
algorithm will, with overwhelming probability, lead to a different top-level hash. The level of the top-level
hash for a given file is determined by the file’s size: a file of up to 4 kilobytes in size requires a single L0 hash,
files up to one megabyte in size can be covered by a L1 hash, and a L2 hash is sufficient for a 256 MB file and so
on.

Please refer to the hash calculation example in the appendix for details.

Sparse or empty file optimization
This hierarchical hashing algorithm does not differentiate between longer, contiguous sequences of null bytes
and “holes” in files, so called sparse files. At the lowest level L0, no hashes (empty hash slots) are generated for
blocks that contain only null bytes. When, during the aggregation step, all 256 lower-level hash slots are found
to be empty, the higher-level hash slot will also be empty. That way, large holes in sparse files can be
represented efficiently.
If the file consists only of null bytes or is a single sparse hole, there are no hashes on any level, regardless of the
file size. In this case, the file content hash is represented by a special hash value consisting of 20 null bytes4, as
the top-level hash cannot be empty.

Rationale for this file content hashing algorithm
As described, a single changed byte in the middle of a large file will trickle up as changes in the hierarchy of
hashes and finally lead to a different top-level hash. When compared to its earlier state, this file can readily be
identified as changed based on a single comparison of the old and new top-level hashes. Assuming that the
sync client has a local database of file content hashes, the location where a remote change occurred can be
tracked down by descending through the hash levels to the affected block. Also note that, once the updated
L0 hash for the changed block has been calculated, all higher hash levels can be re-calculated locally without
having to read the rest of the file. Once the changed block is uploaded to the server, the file’s server-side top-
level hash should confirm the locally calculated new top-level hash.

Clients operating with limited storage space may optimize hash calculation by storing hashes only for level 1
and up and generating L0 hashes on the fly.

Combining hashes and retrieving server-side hashes

File content hashes — chash
Content hashes for files can be retrieved with the GET /file/hash API call; multiple byte ranges for a hash level
can be specified upon request. The response will always include the top-level file content hash chash.

The top-level chash for files can also be requested by adding the members.chash value to the fields parameter
for a GET /dir or GET /meta API call.

3 Addition modulo 2160 refers to a byte-wise addition of two positive 160-bit integers, starting at the least significant byte and with carry
of the arithmetic overflow. After the last addition, a possibly present carry bit is discarded so that the result always fits into 160 bits.
4 0x00

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 7

File system entry names — nhash
Name hashes (nhash) help to avoid issues when different encoding schemes are used at the file system level
and, as a consequence, a client’s local representation of the name differs from the server-side interpretation. A
client operating with a different encoding can resolve the file system entry name by mapping a local name to
a remote nhash to identify the remote name.

The hash of the name of a file system entry for a file or directory is the SHA-1 hash of the name as it is stored
server-side.

The name hash can be requested by adding the members.nhash value to the fields parameter for a GET /dir
call or by adding nhash to the list of fields parameters to the GET /meta call. When a file system entry is created
server-side as the result of an API call, the name hash will always be included in the response.

Metadata hashes — mhash
The metadata hash mhash for a file is calculated by hashing the following components: the SHA-1 hash of the
filename hash (nhash), followed by the file’s size as a 64-bit little endian integer and the UNIX timestamp of
the last modification time, also represented as a 64-bit little endian integer:

mhashf = sha1(nhashf, le64(sizef), le64(mtimef))

For a directory, the size is omitted from the metadata hash:

mhashd = sha1(nhashd, le64(mtimed))

Directory hash (including content, recursive)
The relative top-level hash of a directory is its content hash chash. It is created via the addition, again modulo
2160, of the metadata hashes and the content hashes for files and, if present, the mhash and chash values of the
subdirectories contained.

chashd = mhashf1 + chashf1 + mhashf2 + chashf2 + … + mhashd1 + chashd1 + mhashd2 + chashd2

By including the metadata and content hashes of subdirectories in a directory’s content hash, the hash value
recursively covers the complete sub-tree.

Directory hash (metadata only, non-recursive)
The metadata-only hash mohash for a directory is generated in the same way as the directory content hash,
except that all content hashes are ignored:

mohashd = mhashf1 + mhashf2 + …

The metadata-only hash for a directory is non-recursive. It is relevant for use in caching because the content of
files and directories may not be available locally.

Change notification service
HiDrive offers a change notification service via the websocket protocol where a connected client can subscribe
to one or more directories in order to receive a “doorbell” event whenever the top-level hashes for a
subscribed directory change. The event data includes the new mhash and chash. The rationale is that a client
no longer needs to poll in a loop (pull) but receives notifications only when changes occur (push), reducing
the workload of the client.

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 8

5 Hash calculation examples
The content of the example file is created5 using a 64-byte string (including a newline character at the end) as
an elementary unit:

 #ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz\n

A 4096-byte long sequence can be constructed by concatenating 64 of these units; this is a Level 0 block. This
block of data can then be “covered” by calculating a Level 0 hash as the 20-byte SHA-1 digest of the block’s
content. The hexadecimal representation of the L0 hash for this Level 0 block is:

 MSByte 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 09 f0 77 82 0a 8a 41 f3 4a 63 9f 21 72 f1 13 3b 1e af e4 e6

The first megabyte of the example file’s content is created by repeating this block until 256 blocks have been
written. This first megabyte can be covered by a Level 1 checksum. To calculate the Level 1 checksum, the L0
hashes need to be transformed. First, the position of the block (modulo 256) is appended to each L0 hash as
the new least significant byte:

 L0 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 0 09 f0 77 82 0a 8a 41 f3 4a 63 9f 21 72 f1 13 3b 1e af e4 e6 00
 1 09 f0 77 82 0a 8a 41 f3 4a 63 9f 21 72 f1 13 3b 1e af e4 e6 01
 2 09 f0 77 82 0a 8a 41 f3 4a 63 9f 21 72 f1 13 3b 1e af e4 e6 02
 … 255 09 f0 77 82 0a 8a 41 f3 4a 63 9f 21 72 f1 13 3b 1e af e4 e6 ff

Next, SHA-1 hashes over these transformed L0 hashes inputs are calculated:

 L0 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 0 44 fe 5c a6 34 25 68 b4 16 7b f9 90 b6 4e 40 4a 39 75 e1 c3
 1 4b d3 99 be 7d b3 43 31 3c 95 62 f6 8e 14 0b fe 9f a2 81 ed
 2 96 02 09 99 61 99 bd 68 93 0e 4d cb f4 f3 19 d4 43 30 6f 6b
 … 255 12 9b fe d9 d8 c9 20 6e dd 7d ae 8c 21 44 05 9a ce 57 ce bf

Finally, the 256 hashes resulting from these transformations are added, starting at the least significant byte
and with carry. The addition of the two most significant bytes may result in a value to be carried but it is
discarded, thus making the addition effectively modulo 2160. Adding the transformed hashes for block 0 and 1
shown in detail:

 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 44 fe 5c a6 34 25 68 b4 16 7b f9 90 b6 4e 40 4a 39 75 e1 c3
 4b d3 99 be 7d b3 43 31 3c 95 62 f6 8e 14 0b fe 9f a2 81 ed
 68 254 92 166 52 37 104 180 22 123 249 144 182 78 64 74 57 117 225 195
+ 75 211 153 190 125 179 67 49 60 149 98 246 142 20 11 254 159 162 129 237
C +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
 144 465 246 356 177 216 171 229 83 273 348 391 324 98 76 328 217 280 355 432
M % % % % % % % % % % % % % %
 144 209 246 100 177 216 171 229 83 17 92 135 68 98 76 72 217 24 99 176
S 90 d1 f6 64 b1 d8 ab e5 53 11 5c 87 44 62 4c 48 d9 18 63 b0

To the sum resulting from adding the hashes for block 0 and 1, the hash of block 2 can be added:

5 We provide a script to generate the sample file along with other sample code available at <URL>

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 9

 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S 90 d1 f6 64 b1 d8 ab e5 53 11 5c 87 44 62 4c 48 d9 18 63 b0
+ 96 02 09 99 61 99 bd 68 93 0e 4d cb f4 f3 19 d4 43 30 6f 6b
 26 d3 ff fe 13 72 69 4d e6 1f aa 53 39 55 66 1d 1c 48 d3 1b

The addition of all 256 transformed L0 hashes yields the resulting L1 hash that covers the first megabyte (block
0 on Level 1):

 L1 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 0 75 a9 f8 8f b2 19 ef 1d d3 1a df 41 c9 3e 2e fa ac 8d 02 45

In the example file, the second megabyte data block begins with 128 blocks of the 4096-byte example
sequence while the remaining 128 blocks are empty. Depending on the file system used, the result is either a
sparse file with a hole for that range, or null bytes are actually written out to disk.

To calculate the second L1 hash, the hashes for the L0 blocks are summed up in exactly the same way as was
done for the first L1 block. After block 128, the remaining data blocks are empty (or contain null bytes). By
definition, an empty block is simply skipped during L0 hash calculation and thus, after adding up the
transformed L0 hashes for blocks 256 to 3846, the sum remains unchanged for the rest of the blocks, resulting
in this L1 hash for the second megabyte:

 L1 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 1 da ed c4 25 19 95 01 b1 e8 6b 5e ab a5 64 9c bd e2 05 e6 ae

The example file ends with two complete 4096-byte example sequences followed by the first 2048 bytes of the
example sequence. As the last L0 block is incomplete, it has to be padded with null bytes before calculating the
L0 SHA-1 hashes. The resulting L0 hashes with appended relative block positions are:

 L0 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 512 09 f0 77 82 0a 8a 41 f3 4a 63 9f 21 72 f1 13 3b 1e af e4 e6 00
 513 09 f0 77 82 0a 8a 41 f3 4a 63 9f 21 72 f1 13 3b 1e af e4 e6 01
 514 fd cf d1 8f 27 7c 6f 82 0d c8 b8 51 e3 c8 57 d8 86 3b 97 ff 02

Calculating SHA-1 hashes over these inputs yields:

 L0 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 512 44 fe 5c a6 34 25 68 b4 16 7b f9 90 b6 4e 40 4a 39 75 e1 c3
 513 4b d3 99 be 7d b3 43 31 3c 95 62 f6 8e 14 0b fe 9f a2 81 ed
 514 97 98 ce c3 8d c1 18 fb 9e 05 27 08 c5 db ed 1d 43 1e fa 26

Adding the three transformed L0 hashes for blocks 512-514 modulo 2160 directly results in the L1 hash because
the file ends after the third block and the remaining hashes are all skipped:

 L1 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 2 28 6a c5 28 3f 99 c4 e0 f1 16 83 90 0a 3e 39 66 1c 37 5d d6

Now the three Level 1 hashes for the example file can be transformed to include the block position, hashed
again and then added to form a Level 2 hash:

 L1 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 0 75 a9 f8 8f b2 19 ef 1d d3 1a df 41 c9 3e 2e fa ac 8d 02 45 00
 1 da ed c4 25 19 95 01 b1 e8 6b 5e ab a5 64 9c bd e2 05 e6 ae 01
 2 28 6a c5 28 3f 99 c4 e0 f1 16 83 90 0a 3e 39 66 1c 37 5d d6 02

6 Absolute block positions “256 to 384” are the relative (modulo 256) block positions 0 to 127 in the second megabyte of the file.

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 10

Hashed:

 L1 Block 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 T0 ad 7b 84 f5 b0 ac 2b b7 79 28 42 fc 65 f9 bc c1 a0 bd 02 74
 T1 28 22 08 ee 25 05 ed b8 4f 69 0a a7 ab fe 0d e5 84 70 fe 08
 T2 27 70 1a 56 be 23 64 65 1c 83 7a bf fe 90 ef 6b fd 7c 68 cb

Added modulo 2160, the resulting L2 hash—in this case the content hash chash that covers the entire example
file—is:

 L2 Block 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LSByte
 0 fd 0d a8 3a 93 d5 7d d4 e5 14 c8 64 10 88 ba 13 22 aa 69 47

These calculations can be verified using the API call /file/hash on the example file with parameters level=1 and
range=-. The response is:

{
 "chash": "fd0da83a93d57dd4e514c8641088ba1322aa6947",
 "level": 2,
 "list": [
 [
 {
 "block": 0,
 "hash": "75a9f88fb219ef1dd31adf41c93e2efaac8d0245",
 "level": 1
 },
 {
 "block": 1,
 "hash": "daedc425199501b1e86b5eaba5649cbde205e6ae",
 "level": 1
 },
 {
 "block": 2,
 "hash": "286ac5283f99c4e0f11683900a3e39661c375dd6",
 "level": 1
 }
]
]
}

Name and metadata hashes: nhash and mhash
Assume a directory that is named “HiDrive ☁“, i.e. the ASCII letters HiDrive followed by a space and the
Unicode character "CLOUD" (U+2601), or in hexadecimal notation:

 H i D r i v e ☁
Hex 48 69 44 72 69 76 65 20 e2 98 81

The corresponding name hash nhash is generated by applying SHA-1 to the raw bytes of the name. Note that
API responses contain the name in URL encoding and hash values are represented in hexadecimal notation:

{
 "name": "HiDrive%20%E2%98%81",
 "nhash": "f72f99f62d1142f67ac32be03043c0c2adb3ab88"
}

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 11

To generate the metadata mhash for a directory, the UNIX timestamp of the last modification time mtime is
also required; in this example it is 1456789012 or 2016-02-29T23:36:52+00:00 in ISO-8610 format (UTC).

To calculate the mhash, the UNIX timestamp 1456789012 is first converted into a 64-bit little endian integer
resulting in eight bytes 14d6d45600000000 (hex). The 20 bytes of the nhash and the eight bytes from the
converted timestamp are concatenated and the mhash is the result of applying SHA-1 to this input. The result
is shown here:

{
 "name": "HiDrive%20%E2%98%81",
 "nhash": "f72f99f62d1142f67ac32be03043c0c2adb3ab88",
 "mtime": 1456789012,
 "mhash": "4f450fa02257ea368179557f482e73b2fb80b566"
}

Note that the mtime can become negative: if the last modification time is set to an hour before the UNIX
epoch, the mtime would be -3600 or f0f1ffffffffffff (hex). The mhash for the same directory name is:

{
 "name": "HiDrive%20%E2%98%81",
 "nhash": "f72f99f62d1142f67ac32be03043c0c2adb3ab88",
 "mtime": -3600,
 "mhash": "a287b73ebad0c931c85f6a0e60af534f009d071f"
}

When the mhash is calculated for files, the file size is used as a 64-bit little endian integer in the input for the
SHA-1 operation: first come the 20 bytes of the name hash followed by the eight bytes of the file size and
finally the eight bytes of the last modification time.

The file used for this example is the same one previously used in the explanation of file content hashes; its last
modification time was set to 1234567890 or 2009-02-13T23:31:30+00:00 (UTC).
The API response for this file is:

{
 "name": "sample.bin",
 "mtime": 1234567890,
 "size": 2107392,
 "chash": "fd0da83a93d57dd4e514c8641088ba1322aa6947",
 "mhash": "449fee596b27c879052e9d82366cb5d63ebaf6f6",
 "nhash": "7220d977d2db4499f333bfff421158b9815a686f"
}

And finally, a query for the directory “HiDrive ☁” containing only this sample file yields this response:

{
 "name": "HiDrive%20%E2%98%81",
 "nhash": "f72f99f62d1142f67ac32be03043c0c2adb3ab88",
 "chash": "41ad9693fefd464dea4365e646f56fe96165603d",
 "mtime": 1456789012,
 "mhash": "4f450fa02257ea368179557f482e73b2fb80b566",
 "mohash": "449fee596b27c879052e9d82366cb5d63ebaf6f6",
 "members": [
 {
 "name": "sample.bin",
 "nhash": "7220d977d2db4499f333bfff421158b9815a686f",

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 12

 "chash": "fd0da83a93d57dd4e514c8641088ba1322aa6947",
 "mtime": 1234567890,
 "size": 2107392,
 "mhash": "449fee596b27c879052e9d82366cb5d63ebaf6f6"
 }
]
}

The metadata-only hash for the directory mohash is in this case identical to the mhash of the file because only
that file contributes a metadata hash to the chash and the mohash of the directory itself.

HIDRIVE SYNCHRONIZATION / © STRATO AG / JULY 2021 / VERSION 3.3 – REV.28 13

	1 Introduction
	2 Startup mode
	Server-to-Client replication
	Client-to-Server replication

	3 Operational mode
	Change notification — “doorbells”
	Write operations
	Caching

	Conflict resolution

	4 Hashes in detail
	Introduction
	File content
	Sparse or empty file optimization
	Rationale for this file content hashing algorithm

	Combining hashes and retrieving server-side hashes
	File content hashes — chash
	File system entry names — nhash
	Metadata hashes — mhash
	Directory hash (including content, recursive)
	Directory hash (metadata only, non-recursive)

	Change notification service

	5 Hash calculation examples
	Name and metadata hashes: nhash and mhash

